RIGHT ANGLED TRIGONOMETRY

1. In the diagram below, PQRS is the square base of a solid right pyramid with vertex V. The sides of the square are 8 cm, and the height VG is 12 cm. M is the midpoint of [QR].

Diagram not to scale

- (a) (i) Write down the length of [GM].
 - (ii) Calculate the length of [VM].
- (b) Find
 - (i) the total surface area of the pyramid;
 - (ii) the angle between the face VQR and the base of the pyramid.

(4) (Total 6 marks)

(2)

2. The following diagram shows a carton in the shape of a cube 8 cm long on each side:

- (a) The longest rod that will fit on the bottom of the carton would go from E to G. Find the length l of this rod.
- (b) Find the length L of the longest rod that would fit inside the carton.
- (c) Find the angle of elevation from E to C

(Total 6 marks)

3.a) i) In the right-angled triangle *ABC*, $\cos C = \frac{4}{5}$. Find angle *A*.

ii) In the right-angled triangle ABC, $A\hat{C}B = 60^{\circ}$ and AC = 10cm. Find the EXACT value of AB

(b) The route for the sponsored walk in winter is triangular.

 Senior students start at A, walk North to B, then walk on a bearing 110° to C. They then return to A. AB = BC.

Calculate the bearing of A from C.

[2]

The diagram shows three touching circles. *A* is the centre of a circle of radius *x* centimetres. *B* and *C* are the centres of circles of radius 3.8 centimetres. Angle $ABC = 70^{\circ}$. Find the value of *x*.

Answer x = [3]

5.

ABCD is a trapezium with AB = CD and [BC] parallel to [AD]. AD = 22 cm, BC = 12 cm, AB = 13 cm.

Diagram not to scale

(a) Show that AE = 5 cm.

- (c) Calculate
 - (i) BAE;

(d) Calculate the length of the diagonal [CA].

(3) (Total 10 marks)

3

(2)

(2)

(3)

6. The line L_1 shown on the set of axes below has equation 3x + 4y = 24. L_1 cuts the *x*-axis at A and cuts the *y*-axis at B.

(a) Write down the coordinates of A and B.

(2)

(2)

M is the midpoint of the line segment [AB].

(b) Write down the coordinates of M. {*hint: remember midpoint formula from grade 8 ;-*) given (x_1, y_1) and (x_2, y_2) the midpoint is $(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2})$ }

The line L_2 passes through the point M and the point C (0, -2). Write down the equation of L_2 . (c) (2) (d) Find the length of (i) MC; {hint: use formula for Distance Between Two Points see notes} (2) AC. (ii) (2) The length of AM is 5. Is triangle AMC right angled? (e) (2)(Total 12 marks)