RIGHT ANGLED TRIGONOMETRY

1. In the diagram below, PQRS is the square base of a solid right pyramid with vertex V . The sides of the square are 8 cm , and the height VG is $12 \mathrm{~cm} . \mathrm{M}$ is the midpoint of [QR].

Diagram not to scale

(a) (i) Write down the length of [GM].
(ii) Calculate the length of $[\mathrm{VM}]$.
(b) Find
(i) the total surface area of the pyramid;
(ii) the angle between the face VQR and the base of the pyramid.
(Total 6 marks)
2. The following diagram shows a carton in the shape of a cube 8 cm long on each side:

(a) The longest rod that will fit on the bottom of the carton would go from E to G. Find the length l of this rod.
(b) Find the length L of the longest rod that would fit inside the carton.
(c) Find the angle of elevation from E to C
3.a) i) In the right-angled triangle $A B C, \cos C=\frac{4}{5}$. Find angle A.

ii) In the right-angled triangle $A B C, \quad A \hat{C} B=60^{\circ}$ and $\mathrm{AC}=10 \mathrm{~cm}$. Find the EXACT value of AB

(b) The route for the sponsored walk in winter is triangular.

(i) Senior students start at A, walk North to B, then walk on a bearing 110° to C.

They then return to A.
$A B=B C$,
Calculate the bearing of A from C.
4.

NOT TO
SCALE

The diagram shows three touching circles.
A is the centre of a circle of radius x centimetres.
B and C are the centres of circles of radius 3.8 centimetres. Angle $A B C=70^{\circ}$.
Find the value of x.
5.

ABCD is a trapezium with $\mathrm{AB}=\mathrm{CD}$ and $[\mathrm{BC}]$ parallel to $[\mathrm{AD}] . \mathrm{AD}=22 \mathrm{~cm}, \mathrm{BC}=12 \mathrm{~cm}$, $\mathrm{AB}=13 \mathrm{~cm}$.

Diagram not to scale

(a) Show that $\mathrm{AE}=5 \mathrm{~cm}$.
(b) Calculate the height BE of the trapezium.
(c) Calculate
(i) BA E ;
(ii) $B \hat{C} D$
(d) Calculate the length of the diagonal [CA].
6. The line L_{1} shown on the set of axes below has equation $3 x+4 y=24 . L_{1}$ cuts the x-axis at A and cuts the y-axis at B .

Diagram not drawn to scale

(a) Write down the coordinates of A and B.
M is the midpoint of the line segment [AB].
(b) Write down the coordinates of M. (hint: remember midpoint formula from grade 8 ;-) given $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ the midpoint is $\left.\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)\right\}$

The line L_{2} passes through the point M and the point $\mathrm{C}(0,-2)$.
(c) Write down the equation of L_{2}.
(d) Find the length of
(i) MC; \{hint: use formula for Distance Between Two Points see notes \}
(ii) AC.
(e) The length of AM is 5. Is triangle AMC right angled?

