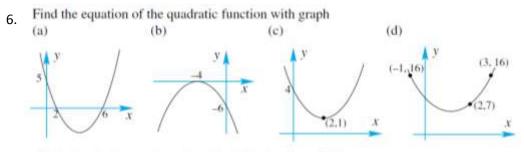
ADDITIONAL MATHEMATICS QUADRATICS


Express the following functions in turning point form and hence sketch their graphs.

(a)	$y = x^2 - 2x + 1$	(b)	$y = x^2 + 4x + 2$	(c)	$y = x^2 - 4x + 2$
(d)	$y = x^2 + x - 1$	(e)	$y = x^2 - x - 2$	(f)	$y = x^2 + 3x + 1$
(g)	$y = -x^2 + 2x + 1$	(h)	$y = -x^2 - 2x + 2$	(i)	$y = 2x^2 - 2x - 1$
(j)	$y = -\frac{1}{7}x^2 + 3x - 2$	(k)	$y = -\frac{x^2}{3} + x - 2$	(1)	$y = 3x^2 - 2x + 1$

2. Write the following in root form and hence sketch the graphs

(a)	$y = x^2 + 3x + 2$	(b)	$y = x^2 - x - 6$	(c)	$y = 2x^2 - 5x - 3$
(d)	$y = x^2 - 4$	(e)	$y = x^2 + x - 5$	(f)	$y = -x^2 + x + 6$
(g)	$y = -x^2 + x + 1$		$y = -2x^2 - 3x + 5$		
(j)	$y = \frac{x^2}{3} - 2x + 3$	(k)	$y = -\frac{x^2}{2} + x + 4$	(1)	$y = 3x^2 - 2x - 4$
3. Fo	or what value(s) of k w	ill the gra	which of $y = x^2 - 3x$	+ k	

- (a) touch the x-axis (b) cut the x-axis (c) never meet the x-axis?
- 4. For what value(s) of k will the graph of $y = kx^2 + 5x + 2$ (a) touch the x-axis (b) cut the x-axis (c) never meet the x-axis?
- 5. For what value(s) of k will the graph of $y = kx^2 2x + k$ (a) touch the x-axis (b) cut the x-axis (c) never meet the x-axis?

Find the solution set for each of the following inequalities.

(a)	$x^2 + 3x + 2 > 0$	(b)	$x^2 - x - 6 < 0$	(c)	$2x^2-5x-3\geq 0$
(d)	$x^2-4\leq 0$	(e)	$x^2+x-5<0$	(f)	$-x^2+x+6\leq 0$
(g)	$-x^2+x+1\geq 0$	(h)	$-2x^2-3x+5\geq 0$	(i)	$2x^2 + 5x - 3 > 0$
(j)	$x^2 - 4x + 3 < 0$	(k)	$2x^2 + x - 1 < 0$	(1)	$x^2 + 3 < 0$
(m)	$-x^2 - 2 > 0$	(n)	$2x^2 - 7x \le 15$	(0)	$3x^2 + 5x > 2$

- (a) For what value(s) of k is the inequation $x^2 + 2kx k > 0$ true for all values of x? 8.
 - (b) For what value(s) of k is the inequation $x^2 kx + 2 \ge 0$ true for all values of x?
 - (c) For what value(s) of n is the inequation $x^2 + 2x \ge 2n$ true for all values of x?

- Find the distance between the points of intersection of the line with equation y = 2x + 1 and the parabola with equation y = x² - 4x + 6.
- 10. Find the value of a such that the line y = 2x + a has exactly one intersection point with the parabola with equation $y = x^2 + 3x + 2$.
- 11. If the graph of the function $f(x) = 4x^2 20x 4$ intersects the graph of the function $g(x) = 1 + 4x x^2$ at the point (m, k), show that the other point of intersection occurs where $x = -m^{-1}$.
- 12. For what value(s) of k is the line 2x = 3y + k a tangent to the parabola $y = x^2 3x + 4$?
- 13 Find the value for c, for some fixed value of m, so that the straight line y = mx + c is a tangent to the parabola $y^2 = 4ax$, $a \neq 0$.