GRAPHS OF FUNCTIONS

1. Draw the graph of $f(x)=2+x-x^{2}$ for $-3 \leq x \leq 4$ using a scale of 2 cm to 1 unit on the x axis and 1 cm to 1 unit on the y-axis.
Use your graph to:
a. $f(0.5)$
b. $f(0)$
c. $\quad x$ such that $f(x)=-5$
d. x such that $f(x)=0$
e. $f^{-1}(-9)$
f. $\quad x$ such that $f^{-1}(x)=3.2$
g. find the value(s) of k such that $f(x)=k$ has:
i. 1 solution
ii. 2 solutions
h. Find the values of x for which $\mathrm{f}(\mathrm{x})$ has a negative gradient
2. Draw the graph of $f(x)=x^{3}-5 x^{2}+5 x+6$ for $-2 \leq x \leq 4$ using 2 cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis
Use your graph to:
a. $f(-0.6)$
b. $\quad x$ such that $f(x)=6$
c. $f^{-1}(8)$
d. x such that $f^{-1}(x)=1.8$
e. find the value(s) of k such that $f(x)=k$ has:
i. 1 solution
ii. 2 solutions
iii. 3 solutions
f. Find the values of x for which $f(x)$ has a:
i. negative gradient
ii. Zero gradient
iii. Positive gradient
3. $f(x)=1.25 x^{3}$ for $-2 \leq x \leq 2$ using 2 cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis Using your graph find: [do NOT solve by calculation]
a. $\quad 1.25 x^{3}=5$
b. $\quad \mathrm{x}$ such that $f^{-1}(x)=-1.8$
c. the gradient of the function when $x=1.4$; hence state the gradient of the function when $x=-1.4$
4. $f(x)=\frac{3}{x}$ for $-3 \leq x \leq 3$ using 2 cm to 1 unit on the x axis and 1 cm to 2 unit on the y axis

x	-3	-2	-1.8	-1.4	-1	-0.8	-0.4	-0.2		0.2	0.4	0.8	1	1.4	1.8	2	3
y																	

Using your graph find:
a. $f(0.6)$
b. $f^{-1}(-5)$
c. the gradient of the function when $x=-1$; hence state the gradient of the function when $x=1$
d. Explain what happened to the y values:
i. when the x values get very large (approaching ∞) or very small (approaching $-\infty$)
ii. when the x values get close to zero
5. $f(x)=\frac{2}{x^{2}}$ for $-3 \leq x \leq 3$ using 2 cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis

x	-3	-2	-1.8	-1.4	-1	-0.8	-0.4	0.4	0.8	1	1.4	1.8	2	3
y														

Using your graph find:
a. $f^{-1}(10)$
b. the gradient of the function when $x=-1$; hence state the gradient of the function when $x=1$
c. explain what happens to the y values:
iii. when the x values get very large (approaching ∞) or very small (approaching $-\infty$)
iv. when the x values get close to zero
6. $y=2^{x}$ for $-4 \leq x \leq 4$ using 2 cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis Using your graph find:
a. $2^{2.4}$
b. $\quad x$ such that $2^{x}=3$
c. Explain what happened to the y values:
i. when the x values get very large (approaching ∞)
ii. when the x values very small (approaching $-\infty$)

