GRAPHS OF FUNCTIONS

- 1. Draw the graph of $f(x) = 2 + x x^2$ for $-3 \le x \le 4$ using a scale of 2cm to 1 unit on the x-axis and 1 cm to 1 unit on the y-axis.
 - Use your graph to:
 - a. *f*(0.5)
 - b. *f*(0)
 - c. x such that f(x) = -5
 - d. x such that f(x) = 0
 - e. $f^{-1}(-9)$
 - f. *x* such that $f^{-1}(x) = 3.2$
 - g. find the value(s) of k such that f(x) = k has:
 - i. 1 solution
 - ii. 2 solutions
 - h. Find the values of x for which f(x) has a negative gradient
- 2. Draw the graph of $f(x) = x^3 5x^2 + 5x + 6$ for $-2 \le x \le 4$ using 2cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis
 - Use your graph to:
 - a. *f*(-0.6)
 - b. x such that f(x) = 6
 - c. $f^{-1}(8)$
 - d. *x* such that $f^{-1}(x) = 1.8$
 - e. find the value(s) of k such that f(x) = k has:
 - i. 1 solution
 - ii. 2 solutions
 - iii. 3 solutions
 - f. Find the values of x for which f(x) has a:
 - i. negative gradient
 - ii. Zero gradient
 - iii. Positive gradient
- 3. $f(x) = 1.25x^3$ for $-2 \le x \le 2$ using 2cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis Using **your graph** find: [do NOT solve by calculation]
 - a. $1.25x^3 = 5$
 - b. x such that $f^{-1}(x) = -1.8$
 - c. the gradient of the function when x = 1.4; hence state the gradient of the function when x = -1.4

4. $f(x) = \frac{3}{x}$ for $-3 \le x \le 3$ using 2cm to 1 unit on the x axis and 1 cm to 2 unit on the y axis

x	-3	-2	-1.8	-1.4	-1	-0.8	-0.4	-0.2	0.2	0.4	0.8	1	1.4	1.8	2	3
y																

Using your graph find:

- a. *f*(0.6)
- b. $f^{-1}(-5)$
- c. the gradient of the function when x = -1; hence state the gradient of the function when x = 1
- d. Explain what happened to the y values:
 - i. when the x values get very large (approaching ∞) or very small (approaching $-\infty$)
 - ii. when the x values get close to zero
- 5. $f(x) = \frac{2}{x^2}$ for $-3 \le x \le 3$ using 2cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis

x	-3	-2	-1.8	-1.4	-1	-0.8	-0.4	0.4	0.8	1	1.4	1.8	2	3
y														

Using your graph find:

- a. $f^{-1}(10)$
- b. the gradient of the function when x = -1; hence state the gradient of the function when x = 1
- c. explain what happens to the y values:
 - iii. when the x values get very large (approaching ∞) or very small (approaching $-\infty$)
 - iv. when the x values get close to zero
- 6. $y = 2^x$ for $-4 \le x \le 4$ using 2cm to 1 unit on the x axis and 1 cm to 1 unit on the y axis Using your graph find:
 - a. 2^{2.4}
 - b. x such that $2^x = 3$
 - c. Explain what happened to the y values:
 - i. when the x values get very large (approaching ∞)
 - ii. when the x values very small (approaching $-\infty$)