BINOMIAL EXPANSION

Investigation

Part 1:

Expand each of the following (use the long method to be safe) and simplify fully:

1. $(a+b)^{2}$
2. $(a-b)^{2}$
3. $(\boldsymbol{a}+\boldsymbol{b})^{3} \quad\left\{\operatorname{hint}(a+b)^{3}=(a+b)(a+b)^{2}\right\}$
4. $(a-b)^{3}$
5. $(\boldsymbol{a}+\boldsymbol{b})^{4} \quad\left\{\operatorname{hint}(a+b)^{4}=(a+b)(a+b)^{3}\right\}$
6. $(a-b)^{4}$

Part 2:

Organize the results above in a table as shown below:

Power of Binomial, \mathbf{n}	Binomial $(\boldsymbol{a}+\boldsymbol{b})^{\boldsymbol{n}}$	Expansion	\# of terms	Coefficients
0	$(\boldsymbol{a}+\boldsymbol{b})^{\mathbf{0}}$	1	1	1
0	$(\boldsymbol{a}-\boldsymbol{b})^{\mathbf{0}}$	1	1	1
1	$(\boldsymbol{a + b})^{\mathbf{1}}$	$\boldsymbol{a}+\boldsymbol{b}$	2	1,1
	$(\boldsymbol{a}-\boldsymbol{b})^{\mathbf{1}}$	$\boldsymbol{a}-\boldsymbol{b}$	2	$1,-1$
	$(\boldsymbol{a + b})^{\mathbf{2}}$	\ldots		$1,2,1$
	$(\boldsymbol{a - b})^{\mathbf{2}}$	\ldots		$1,-2,1$
	$(\boldsymbol{a}-\boldsymbol{b})^{\mathbf{4}}$			\ldots

Part 3:

Observations:
Write observations by completing the statements below:
i. the number of terms in each expansion is ...
ii. the powers of a are ...
iii. the powers of b are
iv. the combined powers of a and $b \ldots$
v. the coefficients for $(\boldsymbol{a}+\boldsymbol{b})^{n}$ and $(\boldsymbol{a}-\boldsymbol{b})^{n}$ are the excepts that the signs coefficients of $(\boldsymbol{a}-\boldsymbol{b})^{\boldsymbol{n}} \ldots$
vi. the coefficients of the terms in the expansion of $(\boldsymbol{a}+\boldsymbol{b})^{n}$ can be written in a triangle as:

This triangle is called PASCAL'S TRIANGLE

Part 4:

Using the pattern you observe to write what you would expect the following to simplify to:

1. $(a+b)^{5}$
2. $(a-b)^{5}$
