BINOMIAL EXPANSION

Investigation

<u>Part 1:</u>

Expand each of the following (use the long method to be safe) and simplify fully:

- 1. $(a+b)^2$
- 2. $(a b)^2$
- 3. $(a+b)^3$ { hint $(a+b)^3 = (a+b)(a+b)^2$ }
- 4. $(a b)^3$
- 5. $(a+b)^4$ { hint $(a+b)^4 = (a+b)(a+b)^3$ }
- 6. $(a b)^4$

<u>Part 2:</u>

Organize the results above in a table as shown below:

Power of	Binomial	Expansion	# of	Coefficients
Binomial, n	$(a+b)^n$		terms	
0	$(a+b)^{0}$	1	1	1
0	$(a - b)^{0}$	1	1	1
1	$(a+b)^{1}$	a+b	2	1,1
	$(a - b)^{1}$	a-b	2	1,-1
	$(a+b)^2$			1,2,1
	$(a - b)^2$			1,-2,1
	$(a - b)^4$			

<u> Part 3:</u>

Observations:

Write observations by completing the statements below:

- i. the number of terms in each expansion is ...
- ii. the powers of *a* are ...
- iii. the powers of *b* are
- iv. the combined powers of a and b ...
- v. the coefficients for $(a + b)^n$ and $(a b)^n$ are the excepts that the signs coefficients of $(a b)^n$...
- vi. the coefficients of the terms in the expansion of $(a + b)^n$ can be written in a triangle as:

This triangle is called PASCAL'S TRIANGLE

<u>Part 4:</u>

Using the pattern you observe to write what you would expect the following to simplify to:

1.
$$(a+b)^5$$

2.
$$(a - b)^5$$