Exercise 1

1. Expand the following binomial expressions:

(a) $(b+c)^{2}$	(b)	$(a+g)^{3}$	(c)	$(1+y)^{3}$
(d) $(2+x)^{4}$	(c)	$(2+2 x)^{3}$	(f)	$(2 x-4)^{3}$
(g) $\left(2+\frac{n}{7}\right)^{4}$	(b)	$(2 x-5)^{3}$	(i)	$(3 x-4)^{3}$
(j) $(3 x-9)^{3}$	(k)	$(2 x+6)^{3}$	(b)	$(b+3 d)^{3}$
(m) $(3 x+2 y)^{4}$	(a)	$(x+3 y)^{5}$	(o) $\left(2 p+\frac{5}{p}\right)^{3}$	
(p) $\left(x^{2}-\frac{2}{x}\right)^{4}$	(q) $\left(q+\frac{2}{p}\right)^{3}$	(r) $\left(x+\frac{1}{x}\right)^{3}$		

2. Without expanding the entire expression in number 1 above, find the term indicated for the questions below:
(a) The middle term
(b) The last term written in decreasing powers of a
(c) The $3^{\text {rd }}$ term written in increasing powers of y
(d) The $3^{\text {rd }}$ term written in decreasing powers of x
(e) The $2^{\text {nd }}$ term written in decreasing powers of x
(f) The $2^{\text {nd }}$ term written in decreasing powers of x
(g) The $4^{\text {th }}$ term written in decreasing powers of x
(h) The $3^{\text {rd }}$ term written in increasing powers of x
(i) The $4^{\text {th }}$ term written in decreasing powers of x
(j) The $1^{\text {st }}$ term written in decreasing powers of x
(k) The $3^{\text {rd }}$ term written in increasing powers of x
(l) The $2^{\text {nd }}$ term written in decreasing powers of b
(m) The $4^{\text {th }}$ term written in decreasing powers of x
(n) The $5^{\text {th }}$ term written in increasing powers of x
(o) The $2^{\text {nd }}$ term written in decreasing powers of p
(p) The $4^{\text {th }}$ term written in decreasing powers of x
(q) The $3^{\text {rd }}$ term written in decreasing powers of p
(r) The $2^{\text {nd }}$ term written in increasing powers of x

Exercise 2

1. Find the terms indicated in the expansions of the following expressions:

	Expression	Term
(a)	$(x+4)^{5}$	x^{3}
(b)	$(x+y)^{7}$	$x^{3} y^{2}$
(c)	$(2 x-1)^{x}$	x^{3}
(d)	$(3 x-2)^{5}$	x^{4}
(c)	$\left(2-3 p^{2}\right)^{4}$	p^{4}
(0)	$(2 p-3 q)^{\top}$	$p^{2} q^{5}$
(g)	$\left(3 p-\frac{2}{p}\right)^{7}$	p

2. Find the coefficients of the terms indicated in the expansions of the following expressions:

	Expression	Term
(a)	$(2 x-5)^{8}$	x^{3}
(b)	$(5 x-2 y)^{6}$	$x^{2} y^{4}$
(c)	$(x+3)^{6}$	x^{3}
(d)	$(2 p-3 q)^{5}$	$p^{4} q$
(c) $\left(2 x-\frac{3}{p}\right)^{n}$	$\frac{x^{2}}{p^{6}}$	
(f) $\left(q+\frac{2}{p^{3}}\right)^{5}$	$\frac{q^{3}}{p^{6}}$	

3. Use the first three terms in the expansion of $(1+x)^{4}$ to find an approximate value for 1.01^{4}. Find the percentage error in using this approximation.
4. (i) Write the expansion of $(5+2 x)^{6}$.
(ii) Use the first three terms of the expansion to approximate 5.2^{6}.
5. Find the cocfficient of x^{-3} in the expansion of $(x-1)^{3}\left(\frac{1}{x}+x\right)^{6}$.
6. Find the constant term in the expansion of $\left(x-\frac{1}{2 x}\right)^{10}$.
7. Find the constant term in the expansion of $\left(3 x-\frac{1}{6 x}\right)^{12}$.
8. Find the term independent of x in the expansion of $(2-x)^{3}\left(\frac{1}{3 x}-x\right)^{6}$.
9. Find the term independent of x in the expansion of $\left(2 x-\frac{1}{x}\right)^{6}\left(\frac{1}{2 x}+x\right)^{6}$.
10. In the expansion of $\left(x-\frac{d}{x}\right)^{3}\left(x+\frac{d}{x}\right)^{3}$, where a is a non-zero constant, the coefficient of the term in x^{-2} is ' -9 ' times the coefficient in x^{2}. Find the valuc of the constant α.
11. If the coefficient of the x^{2} in the expansion of $(1-3 x)^{n}$ is 90 , find n.
12. Three consecutive coefficients in the expansion of $(1+x)^{2}$ are in the ratio $6: 14: 21$. Find the value of n.
13. Find the independent term in the following expansions
(a) $\left(y+\frac{1}{y}\right)^{3}\left(y-\frac{1}{y}\right)^{3}$
(b) $\left(2 x+1-\frac{1}{2 x^{2}}\right)^{6}$
14. In the expansion of $(1+a x)^{a}$ the first term is 1 , the second term is $24 x$ and the third term is $252 x^{2}$. Find the values of a and n.

ANSWERS

Exercise 1

$$
\begin{aligned}
& \text { 1. } \cos \beta^{2}+2 h c+c^{2} \text { bit } a^{2}+3 a^{2} g+3 a g^{2}+g^{3} \text { en } 1+3 y+3 y^{2}+y^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { (10) 27a } x^{3}-168 x^{2}+144 x-64(0) 27 x^{3}-243 x^{2}+725 x-720 \quad \text { an) } 8 x^{2}+72 x^{2}+216 x+216 \\
& \text { it } b^{\prime}+9 b^{2} d+27 h d^{2}+22 d^{\prime} \quad \text { inis } 81 x^{4}+215 x^{2} y+216 x^{2} y^{2}+96 x y^{3}+16 y^{4}
\end{aligned}
$$

2. see above expansion for indicated term

Exercise 2

4. $1.64 x^{5}+900 s^{2}+6000 x^{4}+20000 x^{3}+37500 x^{2}+37900 x+15625$ is. 19750 in 20.5
iv $0.195 .196 .-\frac{61}{8}$ 7. $\frac{231}{16}$ 0. $\frac{130}{27}$ 0. -20 10. $n=a 3 \quad 11, n=5 \quad 12 . n=9$
13. (a)0 (b) -59 24, $a=3, n=x$ 15, $a=s 2, b=s 1$

