Exercise 1

Expand the following binomial expressions:

(a)	$(b + c)^2$	(b)	$(a + g)^{3}$	(c)	$(1 + y)^3$
(d)	$(2 + x)^4$	(e)	$(2+2x)^3$	(f)	$(2x-4)^3$
(g)	$\left(2+\frac{3}{7}\right)^4$	(h)	$(2x-5)^3$	(i)	$(3x-4)^3$
(j)	$(3x-9)^3$	(k)	$(2x+6)^3$	(1)	$(b+3d)^3$
(m)	$(3x+2y)^4$	(n)	$(x+3y)^5$	(0)	$\left(2p + \frac{5}{p}\right)^3$
(p)	$\left(x^2-\frac{2}{x}\right)^4$	(q)	$\left(q+\frac{2}{p^3}\right)^3$	(r)	$\left(x+\frac{1}{x}\right)^3$

2. Without expanding the entire expression in number 1 above, find the term indicated for the questions below:

- (a) The middle term
- (b) The last term written in decreasing powers of a
- (c) The 3^{rd} term written in increasing powers of y
- (d) The 3^{rd} term written in decreasing powers of x
- (e) The 2^{nd} term written in decreasing powers of x
- (f) The 2^{nd} term written in decreasing powers of x
- (g) The 4th term written in decreasing powers of x (h) The 3rd term written in increasing powers of x
- (ii) The 4th term written in decreasing powers of x
- (1) The 4 term written in decreasing powers of x
- (j) The 1st term written in decreasing powers of x
- (k) The 3^{rd} term written in increasing powers of x
- (1) The 2^{nd} term written in decreasing powers of *b*
- (m) The 4^{th} term written in decreasing powers of x
- (n) The 5^{th} term written in increasing powers of x
- (o) The 2^{nd} term written in decreasing powers of p
- (p) The 4^{th} term written in decreasing powers of x
- (q) The 3^{rd} term written in decreasing powers of p
- (r) The 2^{nd} term written in increasing powers of x

Exercise 2

1. Find the terms indicated in the expansions of the following expressions:

	Expression	Term
(a)	$(x + 4)^5$	x ³
(b)	$(x + y)^7$	$x^{5}y^{2}$
(c)	$(2x-1)^{k}$	x^3
(d)	$(3x-2)^5$	x4
(c)	$(2 - 3p^2)^4$	p^4
(f)	$(2p - 3q)^7$	$p^{2}q^{5}$
(g)	$\left(3p-\frac{2}{p}\right)^{7}$	p

2. Find the coefficients of the terms indicated in the expansions of the following expressions:

	Expression	Term
(a)	$(2x-5)^8$.x ³
(b)	$(5x - 2y)^6$	$x^{2}y^{4}$
(c)	$(x + 3)^6$.x3
(d)	$(2p - 3q)^5$	p^4q
(e)	$\left(2x-\frac{3}{p}\right)^8$	$\frac{x^2}{p^6}$
(1)	$\left(q + \frac{2}{p^3}\right)^5$	$\frac{q^3}{p^6}$

3. Use the first three terms in the expansion of (1 + x)⁴ to find an approximate value for 1.01⁴. Find the percentage error in using this approximation.

- (i) Write the expansion of (5 + 2x)⁶.
 - (ii) Use the first three terms of the expansion to approximate 5.2⁶.

5. Find the coefficient of
$$x^{-3}$$
 in the expansion of $(x-1)^3 \left(\frac{1}{x}+x\right)^6$.

- 6. Find the constant term in the expansion of $\left(x \frac{1}{2x}\right)^{10}$.
- **7.** Find the constant term in the expansion of $\left(3x \frac{1}{6x}\right)^{12}$.
- **8.** Find the term independent of x in the expansion of $(2-x)^3 \left(\frac{1}{3x} x\right)^6$.

9. Find the term independent of x in the expansion of
$$\left(2x - \frac{1}{x}\right)^6 \left(\frac{1}{2x} + x\right)^6$$
.

10. In the expansion of $\left(x - \frac{a}{x}\right)^{5} \left(x + \frac{a}{x}\right)^{5}$, where *a* is a non-zero constant, the coefficient of the term in x^{-2} is '-9' times the coefficient in x^{2} . Find the value of

coefficient of the term in x^{-1} is -9 times the coefficient in x^{-1} . Find the value of the constant *a*.

- **11.** If the coefficient of the x^2 in the expansion of $(1-3x)^n$ is 90, find *n*.
- Three consecutive coefficients in the expansion of (1 + x)ⁿ are in the ratio 6 : 14 : 21. Find the value of n.
- Find the independent term in the following expansions

(a) $\left(y+\frac{1}{y}\right)^{3}\left(y-\frac{1}{y}\right)^{5}$ (b) $\left(2x+1-\frac{1}{2x^{2}}\right)^{6}$

14. In the expansion of (1 + ax)ⁿ the first term is 1, the second term is 24x and the third term is 252x². Find the values of a and n.

ANSWERS

Exercise 1

2. see above expansion for indicated term

Exercise 2

1. (a) $160x^3$ (b) $21x^5y^2$ (c) $-448x^3$ (d) $-810x^4$ (e) $216p^3$ (f) $-20412p^2q^3$ (g) -22680p **2.** (a) -1400000 (b) 6000 (c) 540 (d) -240 (a) 81648 (f) 40 **3.** 1.0406 0.0004% **4.** ($64x^6 + 960x^3 + 6000x^4 + 2000x^3 + 37500x^2 + 37500x + 15625$ (i) 19750 (ii) 20.6(iv 0.1% **5.** 19 **6.** $-\frac{63}{8}$ **7.** $\frac{231}{16}$ **0.** $-\frac{130}{27}$ **9.** -20 **10.** $a = \pm 3$ **17.** a = 5 **12.** a = 9**13.** (a) 0 (b) -59 **14.** a = 3, a = 8 **15.** $a = \pm 2$, $b = \pm 1$