
www.MathWorksheetsGo.com
On Twitter: twitter.com/engagingmath
On FaceBook: www.mathworksheetsgo.com/facebook

I. Model Problems.
 II. Practice
 III. Challenge Problems
 IV. Answer Key

Web Resources

YouTube Video on how to solve equations with rational exponents:
www.mathwarehouse.com/algebra/exponents/equations/solve-exponential-equations-radical-in-exponent.php

© www.MathWorksheetsGo.com All Rights Reserved Commercial Use Prohibited

Terms of Use: By downloading this file you are agreeing to the Terms of Use Described at http://www.mathworksheetsgo.com/downloads/terms-of-use.php .

Graph Paper Maker (free): www.mathworksheetsgo.com/paper/
Online Graphing Calculator(free): www.mathworksheetsgo.com/calculator/

Solving Equations with Rational Exponents

For any real number x and m and n are natural numbers:

$$
x^{\frac{m}{n}}=(\sqrt[n]{x})^{m} \text { and } a^{-\frac{m}{n}}=\left(\frac{1}{\sqrt[n]{x}}\right)^{m}, a \text { cannot be negative if } n \text { is even }
$$

Recall: $\left(x^{a}\right)^{b}=x^{a b}$ for any real number x, a, and b.

I. Model Problems

In these examples we will practice solving equations with rational exponents.
Example 1: Solve $\boldsymbol{x}^{\frac{2}{3}}-2=7$
Isolate the variable term.

$$
\begin{aligned}
x^{\frac{2}{3}}-2+2 & =7+2 \\
x^{\frac{2}{3}} & =9 \\
\left(x^{\frac{2}{3}}\right)^{\frac{3}{2}} & =(9)^{\frac{3}{2}} \\
x & =(\sqrt{9})^{3} \\
x & =27 \\
(27)^{\frac{2}{3}}-2 & =7 \\
(\sqrt[8]{27})^{2}-2 & =7 \\
(3)^{2}-2 & =7 \\
9-2 & =7
\end{aligned}
$$

Raise to the reciprocal power to get x^{1}.

Rewrite.
Simplify.
Substitute and check for extraneous solutions.

Answer: $x=27$
Example 2: Solve $-2 x^{\frac{3}{2}}=16$
Isolate the variable term.

$$
\begin{aligned}
\frac{-2 x^{\frac{3}{2}}}{-2^{\frac{3}{2}}} & =\frac{16}{-2} \\
x^{2} & =-8
\end{aligned}
$$

Raise to the reciprocal power to get x^{1}.

Rewrite.
Simplify.
Substitute and check for extraneous solutions.

$$
\begin{aligned}
\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}} & =(-8)^{\frac{2}{3}} \\
x & =(\sqrt[8]{-8})^{2} \\
x & =(-2)^{2} \\
x= & 4 \\
-2(4)^{\frac{3}{2}} & =16 \\
-2(\sqrt{4})^{3} & =16 \\
-2(2)^{3} & =16 \\
-2(8) & =16 \\
-16 & \neq 16
\end{aligned}
$$

$x=4$ is an extraneous solution.
Answer: no solution

II. Practice Problems

Solve.

1. $x^{\frac{1}{2}}=7$
2. $x^{-\frac{1}{4}}=5$
3. $x^{\frac{4}{7}}=16$
4. $x^{\frac{3}{2}}-6=-5$
5. $x^{-\frac{5}{2}}-57=186$
6. $5 x^{\frac{4}{8}}=80$
7. $-15 x^{\frac{8}{7}}=405$
8. $8 x^{\frac{\mathrm{z}}{\mathrm{s}}}=16$
9. $-4 x^{\frac{5}{8}}+75=203$
10. $\frac{1}{5} x^{\frac{\pi}{4}}-31=-6$
11. $x^{\frac{\pi}{3}}=64$
12. $x^{-\frac{\pi}{5}}=-27$
13. $x^{\frac{1}{2}}=7$
14. $x^{\frac{\pi}{3}}+13=9$
15. $x^{\frac{3}{2}}+12=-52$
16. $\frac{3}{5} x^{-\frac{2}{x}}=\frac{3}{20}$
17. $\frac{x^{\frac{\pi}{4}}}{2}=-64$
18. $3 x^{\frac{\pi}{2}}+25=400$
19. $4 x^{\frac{2}{8}}+7=55$
20. $-6 x^{-\frac{1}{2}}+5=-2053$

III. Challenge Problems

1. The braking distance, d, in feet of a car traveling with a velocity, v, in miles per hour can be found with the equation $d=0.02 v^{\frac{\pi}{3}}$. If it takes the car 327.68 feet to come to a complete shop, how fast was the car traveling?
2. The number of automobiles a manufacturer can produce, N, using x units of labor and y units of capital can be found with the equation: $N=60 x^{\frac{1}{2}} y^{\frac{1}{2}}$. If 36,000 automobiles are produced with 400 units of labor, how many units of capital are needed?
3. Find the error in the student's work:

$$
\begin{gathered}
x^{\frac{3}{2}}=27 \\
\left(x^{\frac{3}{2}}\right)^{\frac{2}{3}}=(27)^{\frac{2}{3}} \\
x=18
\end{gathered}
$$

4. Find the error in the student's work:

$$
\begin{aligned}
& x^{-\frac{1}{2}}=4 \\
&\left(x^{-\frac{1}{2}}\right)^{-2}=(4)^{-2} \\
& x=-16
\end{aligned}
$$

5. Rewrite the following equation with rational exponents:

$$
-(\sqrt[3]{x})^{4}+16=27+(\sqrt[5]{-x})^{3}
$$

IV. Answer Key

1. $x=49$
2. $x=64$
3. $x=\frac{1}{625}$
4. $x=-\frac{1}{242}$
5. $x=128$
6. $x=243$
7. $x=1$
8. no solution
9. $x=\frac{1}{9}$
10. no solution
11. $x=8$
12. $x=8$
13. $x=-2187$
14. no solution
15. $x=2 \sqrt{2}$
16. $x=25$
17. $x=-8$
18. $x=24 \sqrt{3}$
19. $x=625$
20. $x=\frac{1}{49}$

Challenge Problems

1. 64 mph
2. 900 units
3. multiplied 27 by $\frac{2}{3}$ rather than raising 27 to the $\frac{2}{3}$ power; answer should be $x=9$
4. Raising to a negative power means find the reciprocal; the negative in the exponent does not affect the sign of the number. The answer should be $x=\frac{1}{16}$
5. $-\left(x^{\frac{4}{3}}\right)+16=27+(-x)^{\frac{\pi}{3}}$
