MATHEMATICS GRADE 9 (ACCLERATED) RELATIONS & FUNCTIONS Worksheet #1

Determine the type of relation in each of the following and hence state if the relation is a function

 $1. \left[(3,4), (4,-6), (5,-7), (3,2), (-2,5) \right] 2. \left\{ (-4,6), (-3,2), (1,0), (7,6), (8,2) \right\} 3 \left\{ (-3,4), (-2,5), (0,0), (-2,5), (4,8) \right\}$

Use (x) = 2x + 7, $g(x) = 3x^2 - 5$, $h(x) = \frac{8-3x}{5+2x}$ for questions 7 to 9

- 7. Find:
 - a. g(-2)
 - b. *gh*(0)
 - c. -4g(-2) + gg(-2) fg(-2)
- 8. Find gf(x) and hf(x) and <u>hence</u> find: a. gf(3), hf(-1)
- 9. Find $f^{-1}(x)$ and $h^{-1}(x)$ and <u>hence</u> find:
 - a. $(fh)^{-1}(x)$
 - b. $h^{-1}(3)$
 - c. x such that h(x) = 3

Evaluate each function

- 10. If $h(x) = 2^x$. Find:
 - a. h(3)
 - b. x such that $h(x) = \frac{1}{\sqrt{8}}$
 - c. x such that $h^{-1}(x) = -2$ [HINT: You can't find the inverse of this function, so use the original function]
- 11. For what value of x are f(x) = 4x + 9 and $g(x) = x^2 + 13$ equivalent?
- 12. The height in meters of a projectile at t seconds can be found by the function $h(t) = -4.9t^2 + 60t + 1.2$. Find the height of the projectile 4 seconds after it is launched.?

At what time is the projectile at a height of 101.6 metres? Comment on your answers.

Remember "HENCE" means that you MUST use the previous parts to find what it now required