DISGUISED QUADRATIC EQUATIONS

1 Solve each of these equations for x.
a)
$$x^{4} - 13x^{2} + 36 = 0$$
 b) $x^{4} - 2x^{2} - 3 = 0$ c) $x^{6} - 28x^{3} + 27 = 0$
d) $x^{6} + 5x^{3} - 24 = 0$ e) $x - 5\sqrt{x} + 6 = 0$ f) $x - 6\sqrt{x} + 5 = 0$
f) $x^{4} + x^{2} = 12$ h) $x = 4\sqrt{x} - 3$ f) $x^{8} + 16 = 17x^{4}$
g) $x^{4} + x^{2} = 12$ h) $x = 4\sqrt{x} - 3$ f) $5x^{4} + 16 = 17x^{4}$
g) $x^{4} + x^{2} = 12$ h) $x^{3} + 7 = \frac{8}{x^{3}}$ c) $x = 12\sqrt{x} - 35$
d) $x^{3} - 6x + \frac{8}{x} = 0$ e) $\sqrt{x} + \frac{10}{\sqrt{x}} = 7$ f) $x^{2} + 3 = \frac{18}{x^{2}}$
g) $x^{4}(x^{4} - 20) + 64 = 0$ h) $15 = \sqrt{x}(8 - \sqrt{x})$ f) $\frac{5}{x^{2}} = x^{2} + \frac{4}{x^{6}}$
j) $2(x^{4} + 6) = 11x^{2}$ k) $2 + \frac{10}{x} = \frac{9}{\sqrt{x}}$ f) $x = \frac{2(3x^{3} + 8)}{x^{5}}$
3 Solve $(x + 3)^{2} - 5(x + 3) + 4 = 0$.
4 Solve $(3x - 1)^{2} + 6(3x - 1) - 7 = 0$.
5 a) Solve $y^{2} - 7y + 10 = 0$.
b) Hence find the solutions to $(x^{2} + 1)^{2} - 7(x^{2} + 1) + 10 = 0$.
6 a) Solve $y^{2} - 5y - 14 = 0$.
b) Hence find the solutions to $(x^{3} - 1)^{2} - 5(x^{3} - 1) - 14 = 0$.
7 Solve $x(x + 1) + \frac{24}{x(x + 1)} = 14$.
*8 a) By using the substitution $p = x + \frac{1}{x}$, show that the equation $2x^{4} + x^{3} - 6x^{2} + x + 2 = 0$.
9 Solve for x:
4 $4^{7} - 6(2^{7}) + 8 = 0$ b $4^{7} - 2^{7} - 2 = 0$ c $9^{7} - 12(3^{7}) + 27 = 0$.
9 Solve for x:
4 $4^{7} - 6(2^{7}) + 8 = 0$ b $4^{7} - 2^{7} - 2 = 0$ c $9^{7} - 12(3^{7}) + 27 = 0$.